Publications

Tayeb-Fligelman, E., Cheng, X., Tai, C., Bowler, J.T., Griner, S., Sawaya, M.R., Seidler, P.M., Jiang, Y.X., Lu, J., Rosenberg, G.M., Salwinski, L., Abskharon, R., Zee, C., Hou, K., Li, Y., Boyer, D.R., Murray, K.A., Falcon, G., Anderson, D.H., Cascio, D., Saelices, L., Damoiseaux, R., Guo, F., and Eisenberg, D.S. (2021) Inhibition of amyloid formation of the Nucleoprotein of SARS-CoV-2. bioRvix, doi: 10.1101/2021.03.05.434000

Guo, F. (2020) “Investigating potential functions of heme in microRNA biogenesis,” in Heme biology: heme acts as a versatile signaling molecule regulating diverse biological processes (Zhang, L., Ed.) 2nd edition, World Scientific.

Shoffner, G.M., Peng, Z., and Guo, F. (2020) Structures of microRNA-precursor apical junctions and loops reveal non-canonical base pairs important for processing. bioRxiv, doi: 10.1101/2020.05.05.078014

Weitz, S.H., Quick-Cleveland, J., Jacob, J.P., Barr, I., Senturia, R., Koyano, K., Xiao, X., Weiss, S., and Guo, F. (2020) Fe(III) heme sets an activation threshold for processing distinct groups of pri-miRNAs in mammalian cells. bioRxiv, doi: 10.1101/2020.02.18.955294

Shoffner, G.M., Wang, R., Podell, E., Cech, T.R., and Guo, F. (2018) In crystallo selection to establish new RNA crystal contacts. Structure 26:1275-1283. PMCID: PMC6125213

Lal, S., Comer, J.M., Konduri, P.C., Shah, A., Wang, T., Lewis, A., Shoffner, G., Guo, F., and Zhang, L. (2017) Heme promotes transcriptional and demethylase activities of Gis1, a member of the histone demethylase JMJD2/KDM4 family. Nucleic Acids Res. 46:215-228. PMCID: PMC5758875

Hines, J.P., Smith, A.T., Jacob, J.P., Lukat-Rodgers, G.S., Barr, I., Rodgers, K.R., Guo, F., and Judith N. Burstyn, J.N. (2016) “CO and NO bind to Fe(II) DiGeorge critical region 8 heme but do not restore primary microRNA processing activity”, J. Biol. Inorg. Chem. 21: 1021-1035.

Barr, I., Weitz, S.H., Atkin, T., Hsu, P., Karayiorgou, M., Gogos, J.A., Weiss, S., and Guo, F. (2015) “Cobalt(III) protoporphyrin activates the DGCR8 protein and can compensate microRNA processing deficiency”, Chem. Biol. 22:793-802.

Chin, R.M., Fu, X., Pai, M.Y., Vergnes, L., Hwang, H., Deng, G., Diep, S., Lomenick, B., Meli, V.S., Monsalve, G.C., Hu, E., Whelan, S.A., Wang, J.X., Jung, G., Solis, G.M., Fazlollahi, F., Kaweeteerawat, C., Quach, A., Nili, M., Krall, A.S., Godwin, H.A., Chang, H.R., Faull, K.F., Guo, F., Jiang, M., Trauger, S.A., Saghatelian, A., Braas, D., Christofk, H.R., Clarke, C.F., Teitell, M.A., Petrascheck, M., Reue, K., Jung, M.E., Frand, A.R., Huang, J. (2014) “The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR”, Nature 510:397-401.

Quick-Cleveland, J., Jacob, J.P., Weitz, S.H., Shoffner, G., Senturia, R., and Guo, F. (2014) “The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin”, Cell Rep. 7: 1994-2005.

Weitz, S. H., Gong, M., Barr, I., Weiss, S. and Guo, F. (2014) “Processing of microRNA primary transcripts requires heme in mammalian cells”, Proc. Natl. Acad. Sci. USA 111: 1861-1866.

Senturia, R., Laganowsky, A., Barr, I., Brooke D. Scheidemantle, B.D., and Guo, F. (2012) “Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8”, PLoS ONE 7(7): e39688. doi:10.1371/journal.pone.0039688

Gong, M., Chen, Y., Senturia, R., Ulgherait, M., Faller, M., and Guo, F. (2012) “Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8”, Protein Sci. 21: 797-808.

Meer, E.J., Wang, D.O., Kim, S.M., Barr, I., Guo, F., and Martin, K.C. (2012) “Identification of a cis-acting element that localizes mRNA to synapses”, Proc. Natl. Acad. Sci. USA 109: 4639-4644.

Barr I., Smit A.T., Chen Y., Senturia R., Burstyn J., Guo F. (2012) Ferric, not ferrous, heme activates RNA-binding protein DGCR8 for primary microRNA processing. Proc. Natl. Acad. Sci. USA. 109(6):1919-1924. Link

Januszyk, K., Fleissner, M. R., Atchabahian, L., Shieh, F. K., Altenbach, C., Martin, S. L., Guo, F., Hubbell, W. L., and Clubb, R. T., “Site-directed spin labeling electron paramagnetic resonance study of the ORF1 protein from a mouse L1 retrotransposon” (2011) Protein Sci. 20:1231-43.

Barr I., Smith A.T., Senturia R., Chen Y., Scheidemantle B.D., Burstyn J., Guo F. (2011) Di George Critical Region 8 (DGCR8) is a Double-Cysteine-Ligated Heme Protein. Journal of Biological Chemistry. 286(18):16716-25. Link

Faller, M., Toso, D., Matsunaga, M., Atanasov, I., Senturia, R., Chen, Y., Zhou, Z.H., and Guo, F. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA. 2010; 16: 1570-1583. Link

Senturia, R., Faller, M., Yin, S., Loo, J.A., Cascio, D., Sawaya, M.R., Hwang, D., Clubb, R.T., and Guo, F. Structure of the dimerization domain of DiGeorge Critical Region 8. Protein Sci. 2010; 19: 1354-1365. Link

Miallau Linda, Faller Michael, Chiang Janet, Arbing Mark, Guo Feng, Cascio Duilio, Eisenberg David Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. The Journal of Biological Chemistry. 2009; 284(1): 276-83. Link

Wang Qi, Barr Ian, Guo Feng, Lee Christopher Evidence of a novel RNA secondary structure in the coding region of HIV-1 pol gene. RNA. 2008; 14(12): 2478-88. Link

Faller Michael, Guo Feng MicroRNA biogenesis: there’s more than one way to skin a cat. Biochimica et biophysica acta. 2008; 1779(11): 663-7. Link

Faller, M., Matsunaga, M., Yin, S., Loo, J., and Guo, F. Heme is involved in microRNA processing. Nature Structural & Molecular Biology. 2007; 14(1): 23-29. Link

Ghosh, K., Guo, F. and Van Duyne, G.D. (2007) “Synapsis of loxP sites by Cre recombinase”, J. Biol. Chem., 282: 24002-24016.

Guo, F., Gooding, A.R. and Cech, T.R. Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme. RNA. 2006; 12: 387-395. Link

Ghosh, K., Lau C.K., Guo, F., Segall, A.M., Van Duyne G.D. (2005) “Peptide trapping of the Holliday junction intermediate in Cre-loxP site-specific recombination”, J. Biol. Chem., 280: 8290-8299.

Guo, F Gooding, AR Cech, TR (2004) Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell. 16(3): 351-62. Link

Guo, F Cech, TR (2002) Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat. Struct. Biol. 9(11): 855-61. Link

Guo, F Cech, TR (2002) In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA 8(5): 647-58. Link

Guo, F Gopaul, DN Van Duyne, GD (1999) Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96(13): 7143-8. Link

Gopaul, DN Guo, F Van Duyne, GD (1998) Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J. 17(14): 4175-87. Link

Guo, F Gopaul, DN van Duyne, GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389(6646): 40-6. Link